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SUMMARY

A numerical scheme for the simulation of blood ¯ow and transport processes in large arteries is presented. Blood
¯ow is described by the unsteady 3D incompressible Navier±Stokes equations for Newtonian ¯uids; solute
transport is modelled by the advection±diffusion equation. The resistance of the arterial wall to transmural
transport is described by a shear-dependent wall permeability model. The ®nite element formulation of the
Navier±Stokes equations is based on an operator-splitting method and implicit time discretization. The
streamline upwind=Petrov±Galerkin (SUPG) method is applied for stabilization of the advective terms in the
transport equation and in the ¯ow equations. A numerical simulation is carried out for pulsatile mass transport in
a 3D arterial bend to demonstrate the in¯uence of arterial ¯ow patterns on wall permeability characteristics and
transmural mass transfer. The main result is a substantial wall ¯ux reduction at the inner side of the curved
region. # 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 847±857, 1997.

No. of Figures: 5. No. of Tables: 0. No. of References: 27.

KEY WORDS: ®nite element method; blood ¯ow; arterial transport processes; curved tubes

1. INTRODUCTION

Cardiovascular transport mechanisms are important in the development of atherosclerosis, a slowly

progressive, occlusive disease of large- and medium-size arteries. Of particular interest are the

transport processes of macromolecules (albumin, LDL) and dissolved gases (O2, CO2) in the arterial

lumen and through the arterial wall. Both processes are coupled and strongly in¯uenced by local

blood ¯ow patterns. The luminal mass transport is a highly convection-dominated process owing to

the low diffusivity of the interesting substances. The mass transfer through the arterial wall can be

de®ned as the ¯ux through a biological membrane whose permeability depends strongly on ¯uid

dynamic factors, especially on the wall shear stress.1 Thus a model describing arterial mass transfer

must be capable of treating simultaneously the solute transport in the blood phase as well as shear-

dependent variations in wall permeability. The in¯uence of arterial ¯uid dynamics on the

development of atherosclerotic lesions was analysed in a number of numerical2±4 and experimental5
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studies. According to recent ®ndings, ¯uid dynamic factors such as ¯ow separation, ¯ow recirculation

and low and oscillating wall shear stress may contribute to the progression of the disease.5 However,

relatively few numerical studies have been carried out to examine the way in which special ¯ow

patterns affect luminal and transmural transport processes.6±8

In the present study a numerical scheme for the simulation of arterial transport processes is

presented. The mathematical description of blood ¯ow uses the time-dependent Navier±Stokes

equations for incompressible Newtonian ¯uids; the transport of macromolecules and gases is

described by the advection±diffusion equation. The concept of shear-dependent wall permeability is

included in the boundary conditions of the advection±diffusion equation in the form of a passive

transport law for the diffusive ¯ux. The numerical calculation of the ¯ow equations and the highly

convection-dominated transport equation uses the streamline upwind=Petrov-Galerkin (SUPG)9±11

technique and implicit time integration. The ®nite element formulations for the Navier±Stokes

equations apply a pressure±velocity correction method3,12,13 (projection method).

Numerical results are presented for pulsatile ¯ow and arterial mass transport in a 3D curved tube

model simulating an arterial bend. Since atherosclerotic lesions tend to occur in regions of branching

and sharp curvature, this is a segment of physiological interest. The physical parameters were chosen

to match the conditions for oxygen transport in large arteries. Since local hypoxia may accelerate

atherosclerotic processes,14 oxygen transport studies are of clinical interest.

2. GOVERNING EQUATIONS

Arterial blood ¯ow is described by the time-dependent Navier±Stokes equations for incompressible

Newtonian ¯uids in non-dimensional form

@u

@t
� �u � H�uÿ 1

Re
H2u� HP � 0 in O;

H � u � 0 in O;
�1�

where u is the velocity vector, P is the pressure and Re is the Reynolds number. The transport of

solutes is governed by the transient advection±diffusion equation

@C

@t
� u � HC ÿ 1

Pe
H2C � 0 in O; �2�

where C is the solute concentration and Pe is the Peclet number. The de®nitions of the non-

dimensional parameters are

Re � U0L0=n; Pe � U0L0=D; �3�
where U0 is the characteristic velocity, L0 is the characteristic length (inlet diameter), n is the

kinematic viscosity and D is the constant diffusion coef®cient.

For the ¯ow problem of interest here the ¯ow partitions into two sections with different types of

boundary conditions. At one boundary section (¯ow entrance and vessel wall) the ¯ow velocity is

prescribed:

u � g on G1: �4�
At the remaining boundary section (out¯ow boundary) a zero surface traction force is assumed:

ÿpI� 1

Re
�Hu� HuT�

� �
n � 0 on G2; �5�
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where n is the outward-pointing normal vector on G2. As initial condition a divergence-free velocity

®eld u0�x� is speci®ed over the domain O at t� 0:

u�x; 0� � u0�x� in O: �6�
For the advection±diffusion equation a constant concentration is assumed at the ¯ow entrance

(boundary GD) and an initial concentration is prescribed at t� 0:

C � CD on GD; C�x; 0� � C0�x� in O: �7�
At the wall (boundary GN) a constitutive relation for the diffusive ¯ux qw is prescribed:

qw � ÿD
@C

@n
� awC on GN: �8�

The wall permeability aw is assumed to be a function of the local wall-shear stress magnitude ktwk.
The shear stress vector at the wall is de®ned by

tw � ÿm
@ut

@n

����
wall

; �9�

where ut is the tangential velocity and m is the dynamic viscosity. In the present study the wall

permeability is assumed to be linearly dependent on ktwk:
aw � bktwk; b constant: �10�

3. FINITE ELEMENT FORMULATIONS

3.1. Navier±Stokes equations

The numerical algorithm for the Navier±Stokes problem is based on a fractional step method

(projection method) originally proposed by Chorin15 in the ®nite difference context. Applications of

Chorin's approach to ®nite elements have been reported in References 16 and 17. The present

method3,12,13 uses a mathematical theorem which allows the decomposition of a suf®ciently regular

vector ®eld into a divergence-free ®eld and an irrotational ®eld.18,19 This theorem can be applied to

the variational formulation of the Navier±Stokes equations in the appropriate function spaces.18,19

Introducing an auxiliary vector ®eld ~un�1 and using implicit time integration, the variational form of

the Navier±Stokes equations can be written as

1

Dt

�
O
� ~un�1 ÿ un�c dx�

�
O
� ~un�1 � H� ~un�1c dx� 1

Re

�
O
H ~un�1c dx

ÿ
�
O

PnHc dx �
�
G2

@ ~un�1

@n
c dsÿ

�
G

Pncn ds; 8c 2 �H1�O��3 ^ cjG1
� 0; �11�

1

Dt

�
O
�un�1 ÿ ~un�1�c dxÿ

�
O
�Pn�1 ÿ Pn�Hc dx � 0; 8c 2 �H1�O��3 ^ cjG1

� 0; �12�

�
O

H � un�1W dx � 0; 8W 2 L2�O�: �13�

Equations (12) and (13) are approximated using the standard Galerkin ®nite element method. For

stabilization of the advective terms an SUPG formulation9,10 is applied to equation (11). The spatial
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discretization uses isoparametric brick elements with trilinear velocity approximation and constant

pressure. The ®nite element approximation on an element level is de®ned by

ue�x; t� �P8
i�1

Niu
e
i �t�; Pe�x; t� � MPe

c�t�; �14�

where Ni; i � 1; . . . ; 8, M are the interpolation functions for the velocity components and the pressure

(M� 1); ue
i ; i � 1; . . . ; 8, and Pe

c are the unknown velocity node values (eight corner nodes) and the

unknown pressure element centre value. The non-linear convection terms are linearized and Picard

iteration is applied. Let un and Pn denote the velocity node values and pressure element values of the

preceding time step tn. Then the following calculation algorithm results for un�1;m�1 and Pn�1;m�1 at

time level n� 1 and Picard iteration level m� 1.

1. Calculate the auxiliary velocity vector ®eld ~un�1;m�1 from the linearized system

�M� ~Mn�1;m� � Dt K�un�1;m� � ~Kn�1;m � 1

Re
L

� �� �
~un�1;m�1

� �M� ~Mn�1;m�un � DtQPn�1;m � fn�1: �15�
2. Calculate the pressure correction qn�1;m�1 � Pn�1;m�1 ÿ Pn�1;m :

QTMÿ1
d Qqn�1;m�1 � ÿ 1

Dt
QT ~un�1;m�1: �16�

3. Calculate the divergence-free velocity ®eld un�1;m�1:

un�1;m�1 � ~un�1;m�1 � DtMÿ1
d Qqn�1;m�1: �17�

4. Calculate the updated pressure Pn�1;m�1:

Pn�1;m�1 � Pn�1;m � qn�1;m�1: �18�
In the equation system (15)±(18) for the velocity and the pressure, M is the mass matrix, M d is the

lumped mass matrix, K�un�1;m� is the convection matrix, L is the diffusion matrix,

Q � �Qx;Qy;Qz�T is the gradient matrix and fn�1 is the vector containing the prescribed boundary

conditions. The matrices ~Mn�1;m and ~Kn�1;m result from the additional weighting of (11) according to

the Petrov±Galerkin formulation.9 The components of the matrices at the ®nite element level are

de®ned as

Mij �
�
Oe

NiNj de; Kij �
�
Oe

Ni�un�1;m � HNj� de; Lij �
�
Oe

HNi � HNj de; �19�

Qx
ik �

�
Oe

@Ni

@x
Mk de; Q

y
ik �

�
Oe

@Ni

@y
Mk de; Qz

ik �
�
Oe

@Ni

@z
Mk de: �20�

The components of ~Mn�1;m and ~Kn�1;m resulting from the additional weighting of (11) with the

upwind perturbation term ~pn�1;m � ~kn�1;mun�1;m � HNi=kun�1;mk2 are de®ned by

~M n�1;m
ij �

�
Oe

~kn�1;m

kun�1;mk2 �u
n�1;m � HNi�Nj de: �21�

~Kn�1;m
ij �

�
Oe

~kn�1;m

kun�1;mk2
�un�1;m � HNi��un�1;m � HNj� de: �22�
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Owing to the linear interpolation functions used, there is no contribution from the additional

weighting of the diffusive term. The upwind parameter ~kn�1;m � ~kn�1;m�Pen�1;m
h � is determined

according to Hughes et al.11 as a function of the local element Peclet numbers

Pen�1;m
h � Rekun�1;mkh=2. The Navier±Stokes solver described has been validated with many

examples.13,20 Applications to 3D unsteady ¯ow problems have been performed by Perktold and

coworkers,2±4 where the developed algorithm has been applied to the simulation of non-Newtonian

inelastic blood ¯ow2 and to the ¯ow in arteries with elastic walls.3,4

3.2. Transport equation

Applying implicit time discretization, the variational form of the advection±diffusion equation

subject to the boundary conditions (7) and (8) is

1

Dt

�
O
�Cn�1 ÿ Cn�f dx�

�
O

un�1 � HCn�1f dx�
�
O

1

Pe
HCn�1 � Hf dx

� ÿ
�
GN

1

Pe
awCn�1f ds; 8f 2 H1�O� ^ fjGD

� 0: �23�

Using eight-node brick elements and trilinear interpolation functions for the concentration

Ce�x; t� �P8
i�1

Nic
e
i �t�; �24�

the algebraic system relating from the SUPG formulation of (23) is

�M� ~Mn�1� � Dt �K � ~Kn�1� � 1

Pe
�L� R�

� �� �
cn�1 � �M� ~Mn�1�cn � fn�1: �25�

The components of the matrices M, K, L and ~M�un�1�; ~K�un�1� are de®ned according to (19)±(22),

where the upwind parameter ~kn�1 is based on the local element Peclet number Pen�1
h � Pekun�1kh=2.

The matrix R results from the consideration of the boundary integral in (23) and its components on an

element level are de®ned for neighbouring nodes i0; j0 2 GN by

Ri0j0 �
�
ge

N

awNi0Nj0 ds; �26�

where the permeability function aw is determined according to (10). Validation studies of the

described calculation algorithm for the unsteady transport equation have been performed.21 The

presented numerical solution methods for the Navier±Stokes equations (15)±(18) and the advection±

diffusion equation (25) have been applied to the calculation of coupled ¯ow and oxygen transport8

and to the simulation of shear-dependent protein transport in axisymmetric domains.22

4. NUMERICAL RESULTS AND DISCUSSION

A numerical simulation of pulsatile blood ¯ow and arterial mass transport in a 3D 90� curved tube

artery model (Figure 1) is carried out. The parameters (diffusion coef®cient, permeability) were

chosen to model physiological conditions for the transport of dissolved oxygen. The physical

dimensions are: tube diameter, L0 � 0�62 cm; length of inlet section, Len � 2L0; length of outlet

section, Lout � 10L0; radius of curvature, R � 0�62 cm. The computer simulation is carried out under
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pulsatile ¯ow conditions simulating arterial ¯ow.4 A sinusoidal wave-form is used for the averaged

axial velocity at the entrance:

uin�t� � U0�1ÿ cos�ot��; �27�
where U0 � 16�9 cm s71 is the time-averaged mean inlet velocity and o � 8�38 is the angular

frequency based on a pulse period Tp � 0�75 s. Fully developed inlet velocity pro®les corresponding

to the chosen pulse wave-form (Womersley solutions) are numerically calculated as long straight tube

pro®les in a preprocessor step and are used as boundary values at the ¯ow entrance in the pulsatile

simulation. Assuming a kinematic blood viscosity n � 0�035 cm2 s71, the resulting dimensionless

parameters are Re� 300, Womersley number a � 4�8 �a � �L0=2�
p�o=n�� and Dean number

k � 212 �k � Re
p�L0=2R��.

The mass transport calculation is based on the diffusion coef®cient D� 2�75� 10ÿ5 cm2 sÿ1 for

oxygen in blood and a physical permeability factor b �2�4561074 cm3 dyn71 s71 in (10). The

constant b was chosen such that the diffusive ¯ux at the ¯ow entrance and for time t=Tp � 0�25

(mean ¯ow rate) matches a physiological arterial reference ¯ux23 g0� 4�8261076

ml cm72 s71 (b� g0=t0Cd, where t0� 7�63 dyn cm72). The resulting Peclet number is

Pe� 3�816105. A constant physiological reference concentration CD� 2�5861073 ml O2 cm73 is

assumed at the inlet. The numerical solution of the steady transport equation subject to the steady

velocity ®eld is chosen as initial concentration ®eld C0�x� in the pulsatile calculation.

The ®nite element subdivision of the in¯ow cross-section and in the curved tube region is shown in

Figure 1. Because of perfect geometric symmetry, only one half of the tube is discretized and the

appropriate boundary conditions for the ¯ow and mass transport calculations are applied. The

semicircle is divided into 388 elements and 190 layers are created for the whole ¯ow domain,

resulting in 73,332 trilinear elements and 79,990 nodes. The total number of unknowns is 393,292.

For a periodic solution, ®ve pulse cycles are calculated, where each cycle is divided into 96 implicit

time steps. The maximum error in periodicity is less than 0�3% for the velocities and less than 0�5%

for the concentration. The solution of the linear equation systems uses a stabilized version of the bi-

conjugate gradient method (BiCGSTAB)24 for unsymmetric matrices and incomplete LU

factorization for preconditioning.25 Applying a compact storage scheme,25 only non-zero components

of the system matrices are stored in the form of a one-dimensional array. Using the solution vector of

the last time step (iteration step) as a start vector for the BiCG solver, three to four iterations for the

velocity components and two iterations for the concentration have to be carried out on average, where

the criterion for the updated residual vector r was krk2=kbk2 < 10ÿ7 (b is the right-hand side of the

linear equation system).

Figure 2(a) shows axial velocity pro®les in the symmetry plane and contour lines of axial velocity

at cross-sections S1 and S2 (as indicated) for the pulse phase angle of maximum ¯ow. Generally there

Figure 1. Curved tube artery model: ®nite element subdivision at a cross-section and in curved region
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are high velocity gradients at the outer wall and low velocity gradients at the inner wall of the bend. A

small zone of reversed ¯ow can be seen at the beginning of the curved section at the outer wall.

Figure 2(b) demonstrates the corresponding pro®les of normalized concentration C=CD and the

isoconcentration contours. The concentration pro®les have a blunted shape and are characterized by a

small concentration boundary layer due to the high Peclet number. The isoconcentration contours

demonstrate the widening of the concentration boundary layer at the inner side of the bend.

The wall shear stress tw along the outer wall and the inner wall at the symmetry plane is shown in

Figure 3 for the pulse fractions t=Tp� 0�0 (a), 0�25 (b), 0�5 (c), 0�75 (d) (the square symbols mark the

Figure 2. (a) Axial velocity pro®les and contour lines of axial velocity. (b) Normalized concentration pro®les and
isoconcentration lines
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beginning and the end of the curved region). The maximum shear stress occurs at the outer wall at the

end of the curved region (phase angle c). Reversed ¯ow is indicated by negative shear stress values

occurring at the outer wall at the beginning of the curved section and at the inner wall at the end of

the curved section (phase angles c and d), where also the shear stress magnitude is low.

The in¯uence of the wall shear stress on the non-dimensional diffusive wall ¯ux qw (equation (8))

is demonstrated in Figure 4. Since the wall permeability aw was assumed to be linearly dependent on

the wall stress magnitude (equation (8)), the wall ¯ux curves and the shear stress curves exhibit the

same qualitative characteristic. According to clinical observations, atherosclerotic lesions in arterial

bends preferentially occur at the inner wall at the end of the bend and at the outer wall at the

beginning of the curved region. The numerical results show that there is a strong correlation with

corresponding zones of low wall shear stress and low solute wall ¯ux at these sites. The strong ¯ux

reduction in these regions results from both a wide concentration boundary layer (see Figure 2(a),

position S1 and Figure 2(b), position S2) and a low wall permeability due to a low wall shear stress

magnitude (Figure 3).

Figure 5 shows contours of the non-dimensional wall ¯ux qw (equation (8)) and the normalized

wall concentration on the surface of the tube for the pulse phase angle of maximum ¯ow. The plot

Figure 3. Wall shear stress tw along outer and inner walls of tube (symmetry plane) for different pulse phase angles (as
indicated)

Figure 4. Non-dimensional wall ¯ux qw at outer and inner walls of tube for different pulse phase angles (as indicated)
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demonstrates a severe wall ¯ux reduction at the inner wall of the bend, where also the local wall

concentration is low.

5. CONCLUSIONS

A numerical scheme for the simulation of unsteady blood ¯ow and cardiovascular transport processes

has been presented. The application of a streamline upwind=Petrov±Galerkin technique in the basic

®nite element formulations has enabled a stable solution of both the convection-dominated transport

equations and the ¯ow equations. The capability of treating simultaneously the blood phase transport

and shear-dependent variations in wall permeability has been included in the model and is an

important feature for the physiologically realistic modelling of arterial mass transfer processes.1±5

Numerical results have been presented for 3D pulsatile mass transfer in an arterial bend. The main

characteristic is a substantial wall ¯ux reduction through the inner wall of the curvature in low-shear

regions where the ¯uid boundary layer resistance is high and the wall permeability is low. This is in

correlation with clinical observations of atherosclerotic lesions in low-shear regions at the inner wall

of arterial bends.26

The linear shear-dependent permeability model used yielded a wall ¯ux distribution exhibiting as

much spatial variability as the wall shear stress itself. Although this simple model may not be valid

Figure 5. Contours of normalized wall ¯ux (upper picture) and normalized wall concentration (lower picture) for pulse phase
angle of maximum ¯ow
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for oxygen transfer through the wall in this strong form, it principally demonstrates the effect of

shear-dependent variations in intimal permeability on the wall ¯ux distribution in a 3D numerical

analysis. The consideration of shear-dependent endothelial permeability is very important in the mass

transport of macromolecules such as albumin or LDL.1 The development and experimental validation

of models describing shear-dependent arterial wall permeability to macromolecules are a current

objective of research.27 On the basis of the presented stable numerical techniques and in combination

with experimental data on wall permeability, it should be possible to carry out 3D numerical model

studies on macromolecule transport.
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